
Multi-threaded Chess AI
Jonathan Cirillo

Undergrad, Dept. Computer Science
University of Central Florida

Orlando, FL, USA
Cirillojon@knights.Ucf.edu

Jesse Johnson
Undergrad, Dept. Computer Science

University of Central Florida
Orlando, FL, USA

j-jesse23@knights.ucf.edu

Lester Miller
Undergrad, Dept. Computer Science

University of Central Florida
Orlando, FL, USA

lmiller44@knights.ucf.edu

Marco Peric
Undergrad, Dept. Computer Science

University of Central Florida
Orlando, FL, USA

mperic@knights.ucf.edu

Jonathan Velez
Undergrad, Dept. Computer Science

University of Central Florida
Orlando, FL, USA

johnvelez01@knights.ucf.edu

Abstract—For complex problems whose solutions tend to
be time-consuming, one of the ways to improve runtime
is through parallelization. Even for artificial intelligence
(AI) algorithms that play complex games like chess, we
can break down the processing time by parallelizing its
main algorithm. This paper will be used to explore this
potential in performance. We will use an algorithm that is
commonly used in chess AIs called Alpha-Beta-Pruning.
Alpha-Beta-Pruning is an optimization of the Minimax
algorithm, which is used to find the best move in a 2-player
game. By itself, the Alpha Beta algorithm increases the
processing speed of the searching algorithm but we plan
to improve its performance using parallelization. Using
java, we successfully implemented three parallelizations
of the Alpha Beta pruning algorithm, each using different
parallelization methods. We then compare the performance
of these parallelized versions to the sequential version, to
determine if there was any improvement, and evaluate
which technique was most effective.

Index Terms—Alpha Beta pruning, Minimax, Parallel
algorithms

I. INTRODUCTION

Since its inception, chess has long been considered a
challenging and complex game that requires players to
memorize opening theory and predict their opponent’s
next moves. With the advancement in technology and
the potential to incorporate Artificial Intelligence (AI) to
play chess, there has been a significant improvement in
chess AI. So much so that AI has long surpassed human
capabilities when the IBM computer Deep Blue beat the
chess grandmaster in 1997[1]. There are now plenty of
algorithms that can beat humans in a game of chess, but
we find that the same limitations that affect chess players

also affect these algorithms: the number of moves that a
player can look ahead is limited by resources and time.

For simple games such as tic-tac-toe or checkers, an
algorithm could determine the winning moves after a
player’s first or second move. But what makes chess such
a complex game is the almost limitless amount of moves
that a player can take. After just 3 moves from each
player the pieces can have over nine million possible
variations [2]. To address this challenge we attempt to
parallelize a well-known chess search algorithm called
Alpha Beta pruning using 3 different parallelization
techniques. We will then demonstrate their effectiveness
by measuring and comparing these implementation’s
performance with the sequential Alpha Beta pruning.

A. Minimax

Fig. 1. Example of a Minimax algorithm.

B. Alpha Beta Pruning

Fig. 2. Example of Alpha Beta pruning of the Minimax algorithm

The minimax search tree is an algorithm that filters
for the best move. At each level of depth, the node takes
the alternative between the min and max value of their
child nodes. With respect to chess, each depth represents
the alternating moves between players and the values
represent the state of the board after a move is made.
This guarantees that after doing the search, the best move
can be decided given a certain depth.

Alpha-beta pruning: The algorithm begins by evalu-
ating the root node of the tree, which represents the
current state of the chess game. From this root node,
the algorithm will explore all possible moves that can
be made by the current chess position. The alpha and
beta values to keep track of the best scores found so
far for maximizing and minimizing each play. Initially,
alpha is set to negative infinity, which means that any
position score greater than negative infinity will become
the new alpha value. Beta is set to positive infinity, which
means that any position score less than positive infinity
will become the new beta value.

When the algorithm evaluates each child node, it
updates the alpha and beta values based on the scores
found so far. During the search, alpha becomes greater
than or equal to beta, then the algorithm can prune
the current subtree. After all, it knows that any further
exploration of this subtree will not contribute to the
final result, since the subtree contains moves that are
not optimal. When A child node is a maximizing node,
then the algorithm updates the alpha value with the
maximum score found so far. This means that a move
will always choose the results in a score greater than or
equal to the current alpha value. At the same time, a child
node is given a minimizing node, then the algorithm
updates the beta value with the minimum score. In other
words, the algorithm aiming to minimize the score will

consistently select a move that generates a score that is
either equivalent to or lower than the present beta value.

II. ALPHA BETA IN CHESS

The purpose of this study was to enhance the perfor-
mance of the Alpha-Beta algorithm, utilizing parallelism,
to more efficiently calculate a move for an AI in a chess
game. A high level overview of how the Alpha-Beta
algorithm operates in the context of a chess game:

• Assess each potential move from the current board
position

• Identifies the optimal move for the current player
• The algorithm maintains alpha and beta values,

representing the best scores discovered so far for
maximizing and minimizing each play

• As the algorithm evaluates each child node, it
updates the alpha and beta values based on the
scores found up to that point

• Prunes the current subtree when alpha is greater
than or equal to beta

Our team built off of an existing Java chess engine that
features an AI implemented with a sequential Alpha-Beta
algorithm, and used it as our base for parallelization.
This sequential code incorporates a board evaluator that
assesses positions based on various criteria and search
depth. The code also sorts moves according to various
criteria, such as threat level and attack status. This sort-
ing is referred to as “Move Ordering.” Move Ordering is
performed to prioritize moves that have a higher chance
of producing a positive result. By sorting the moves, it
lets the algorithm explore these branches first, leading
to earlier pruning, and more potential performance im-
provement. The Alpha-Beta search is performed in the
‘execute’ method. It takes in a Board object and returns
the best move for the current player on the given board,
as well as the execution time. The max and min helper
methods are used to implement the core steps of the
Alpha-Beta algorithm.

Fig. 3. Alpha-Beta for Chess Positions

III. IMPLEMENTATION

First, determine whether we are the minimizing or
maximizing player (black or white). Then, to find the
value, the corresponding helper method is called.

Min/Max function:
1) Initialize current lowest/highest value.
2) Sort and iterate through legal moves.
3) Update current highest value using the min/max

function.
4) Implement alpha-beta pruning and increment cut-

offs.
Note that the above steps are executed recursively

until the desired depth is reached or the game is over.
For the purpose of this study, all of these core features
were kept the same for the parallel implementations
to ensure unbiased results. The sequential method was
altered to implement the following Java multi-threading
techniques to determine if calculation for each move
could be improved via parallelism:

A. Sequential Code:

i f (a l l i a n c e . i s W h i t e ()) {
c u r r e n t V a l u e = min (

m o v e T r a n s i t i o n . ge tToBoard () ,
t h i s . s e a r c h D e p t h − 1 ,
h i g h e s t S e e n V a l u e , l o w e s t S e e n V a l u e) ;

} e l s e {
c u r r e n t V a l u e = max (

m o v e T r a n s i t i o n . ge tToBoard () ,
t h i s . s e a r c h D e p t h − 1 ,
h i g h e s t S e e n V a l u e , l o w e s t S e e n V a l u e) ;

}

i n t c u r r e n t H i g h e s t = h i g h e s t ;
f o r (f i n a l Move move :

t h i s . moveSor t e r . s o r t (
boa rd . c u r r e n t P l a y e r () . ge tLega lMoves ()))
c u r r e n t H i g h e s t = Math . max (
c u r r e n t H i g h e s t ,

min (m o v e T r a n s i t i o n . ge tToBoard () ,
d e p t h − 1 ,
c u r r e n t H i g h e s t , l o w e s t)) ;

i f (l o w e s t <= c u r r e n t H i g h e s t){
t h i s . c u t O f f s P r o d u c e d ++;
b r e a k ;

}
r e t u r n c u r r e n t H i g h e s t ;

1) ExecutorService: A high-level Java API manag-
ing task execution through a thread pool. It over-
sees thread creation, management, and disposal,

focusing on task execution logic. ExecutorService
is useful for concurrent task execution, enhancing
application performance and responsiveness.
Outline of our ExecutorService implementa-
tion:

• Create a fixed thread pool with a specified
number of threads.

• For each legal move, submit a task to the
executor for parallel execution.

• Use a lambda expression for the task that
contains the parallel computation logic.

• Collect the results from the futures by calling
future.get() and process them accord-
ingly.

• Shut down the executor after all tasks are
done.

B. Executor-Service Code:

f i n a l E x e c u t o r S e r v i c e e x e c u t o r =
E x e c u t o r s . newFixedThreadPool (numThreads) ;

L i s t <Fu tu re<MoveResult>> f u t u r e s =
new A r r a y L i s t <>();

f o r (f i n a l Move move :
t h i s . moveSor t e r . s o r t (
boa rd . c u r r e n t P l a y e r () . ge tLega lMoves ()))
f u t u r e s . add (e x e c u t o r . subm i t (() −> {

/ * p a r a l l e l c o m p u t a t i o n * /
r e t u r n new MoveResul t (move , c u r r e n t V a l u e) ;
})) ;

f o r (Fu tu re<MoveResult> f u t u r e : f u t u r e s)
MoveResul t moveResul t = f u t u r e . g e t () ;
/ * p r o c e s s moveResul t * /

e x e c u t o r . shutdown () ;

2) ForkJoin: A Java framework enabling parallel
task execution using a divide-and-conquer ap-
proach. It breaks large tasks into smaller subtasks
executed concurrently by worker threads. ForkJoin
employs a work-stealing algorithm, optimizing
system resource usage and overall performance.
Outline of our ForkJoin implementation:

• Create a list of tasks for each legal move.
• Instantiate a MoveResultTask for each

move, passing in the necessary variables.
• Invoke all tasks in parallel using
RecursiveTask.invokeAll().

• Collect the results by joining each task and
processing them as needed.

C. ForkJoinTasks Code:

L i s t <ForkJo inTask<MoveResult>> t a s k s =
new A r r a y L i s t <>();

f o r (f i n a l Move move :
t h i s . moveSor t e r . s o r t (
boa rd . c u r r e n t P l a y e r () . ge tLega lMoves ()))
t a s k s . add (new MoveResul tTask (move)) ;

L i s t <MoveResult> r e s u l t s =
R e c u r s i v e T a s k . i n v o k e A l l (t a s k s)
. s t r e a m () . map (F o r k J o i n T a s k : : j o i n)
. c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

p r i v a t e c l a s s MoveResul tTask
e x t e n d s Recu r s iveTask<MoveResult>

p r o t e c t e d MoveResul t compute ()
/ * p a r a l l e l c o m p u t a t i o n * /

3) Parallel Streams: A Java feature that simplifies
parallel collection processing using functional pro-
gramming concepts. By converting a sequential
stream to a parallel stream, operations like filter-
ing, mapping, and reducing can execute concur-
rently, taking advantage of modern multi-core pro-
cessors. Parallel streams use the ForkJoin frame-
work internally for task management.
Outline of our Parallel Streams implementa-
tion:

• Use parallel streams by calling
parallelStream() on the sorted list
of legal moves.

• Map each move to a new MoveResult ob-
ject using a lambda expression that contains
the parallel computation logic.

• Reduce the results to find the best move based
on the player’s alliance.

• Extract the best move from the final
MoveResult object, or return a null move
if no result is found.

D. Parallel Streams Code:

Move bestMove = t h i s . moveSor t e r . s o r t (
boa rd . c u r r e n t P l a y e r () . ge tLega lMoves ())
. p a r a l l e l S t r e a m ()

. map (move −> { / * a l p h a b e t a * / })

. r e d u c e ((r e s u l t 1 , r e s u l t 2) −> {
/ * b e s t move * / })

. map (r e s u l t −> r e s u l t . move)

. o r E l s e (MoveFactory . getNul lMove ()) ;

In each parallel implementation, we used a Concurrent
HashMap to implement a transposition table utilizing

Zobrist hashing. The transposition table acts as a cache
for storing previously computed results, allowing for
quicker lookups and eliminating redundant calculations.
Zobrist hashing is used to generate unique hash keys
for each game state, which helps in efficient storage and
retrieval of positions in the transposition table. Another
benefit of this implementation is that multiple threads
can access the cache simultaneously without synchro-
nization overhead, as a Concurrent HashMap allows for
concurrent read and write operations without locking the
entire data structure. This concurrency control leads to
a reduction in computational time and an enhancement
in overall performance.

E. Transposition Table:

p r i v a t e f i n a l ConcurrentHashMap<Long , I n t e g e r >
t T a b l e = new ConcurrentHashMap <>();

f i n a l l ong boardHash = board . g e t Z o b r i s t H a s h () ;
I n t e g e r cachedValue = t T a b l e . g e t (boardHash) ;
i f (cachedVa lue != n u l l)

r e t u r n cachedValue ;

IV. TESTING STRATEGY

• To test each approach, we had each implementation
play themselves up to a set number of moves and
depth.

• For this experiment, the depth was kept constant.
• Number of cores, and parallel-implementation are

our independent variables.
• We measured the move time calculations for each

move of each game.
• For each of the 4 implementations, we had the AI

play itself 5 times, so 20 games altogether.
• We chose to only consider the first 50 moves (25

for each side) as they are the most computationally
intensive (most possibilities) and near the end times
speed-up & normalize.

• Each 5 team members repeated these steps on their
own hardware, to get a total of 100 games.

• Tested on 2, 4, and 8 core machines.
• Compared the overall move-time averages for each

game.

V. EVALUATION

The results from our experiment indicate that Executor
Service offers the most optimal performance, followed
by Fork/Join and Parallel Streams. The superior perfor-
mance of Executor Service can be attributed to its ability

Fig. 4. Graph of Results

to maintain a constant thread pool, providing better
resource utilization control and minimizing overhead
associated with thread creation and management. This
constant thread pool, created using ThreadPoolExecu-
tor, ensures that threads are not repeatedly created and
destroyed, reducing overhead and aligning well with
the iterative control flow of the Alpha-Beta algorithm,
making it an effective parallelization method for Alpha-
Beta.

ForkJoinTask also performed better than the Sequen-
tial, but was not as effective as ExecutorService. Some
of the limitations of ForkJoinTasks that may have led to
this are:

• If tasks being executed have varying execution
times, the work-stealing algorithm may not effec-
tively balance the workload.

• Some moves are much more computationally ex-
pensive than others, and threads may steal in a
suboptimal way, causing some threads to perform
much more work than others. This imbalance can
lead to decreased performance.

• Work stealing can lead to cache misses which occur
when a worker accesses a subtask that is not in its
local cache, causing delays and traffic.

• Moving work from one thread to another creates
overhead that may be computationally expensive.

The parallel streams performed the worst of the three
parallelized approaches, but still performed better than
the Sequential approach. Because Parallel Streams uses
the Fork/Join Framework in the background to execute
tasks, it also suffers from the same limitations. In addi-
tion to these:

• Functional programming relies heavily on func-
tion calls and may produce more intermediate ob-
jects than other approaches. This can lead to in-
creased overhead due to function call management
and garbage collection, potentially affecting perfor-
mance.

Upon examining our findings, it became apparent that
Fork/Join and Parallel Streams exhibited a proportionally
superior performance on the 8-Core system and 4-Core
System compared to the 2-core processor. When compar-
ing this to the sequential results, we see that around 2
cores, these three methods have similar results, but when
increasing cores, the sequential results do not improve
very much, while the parallel ones improve drastically.
This is evidence of the effect that allowing more threads
to work increases the performance of the Alpha-Beta
algorithm.

In summary, ExecutorService stands out as the most
effective parallelism technique in our study for the
Alpha-Beta algorithm, but each implementation was able
to improve upon the Sequential Algorithm.

VI. LIMITATIONS OF RESEARCH

One limitation of the research is the inability to
perform testing in a perfectly controlled environment.
When performing testing, other programs running on
the computer at the time of testing could introduce
inaccuracies in the recorded times. We attempted to
account for this by averaging the results of 5 games for
each method, to reduce the effect error had on the data.
Another limitation is the inherent randomness of each
game and the varying computation times for each po-
sition. This can also introduce inaccuracies, as some
positions are quicker to search through the possibilities
due to less possible moves. We chose to concentrate on
the game’s initial 50 moves, which are usually the most
computationally demanding, to minimize the impact of
randomness.
It is important to note that the order the sequential
method explores each node will remain consistent, so
if the same moves are given to it, it will produce
the same result every time. This is not true for the
parallel implementations because multiple threads are
evaluating nodes simultaneously and the order may be
different each time, causing different pruning decisions
and alternative moves being selected. This does not
necessarily cause move quality to decrease, but would
require further testing to evaluate further.

VII. CHALLENGES ENCOUNTERED

Our original parallel implementation, before moving
to the context of a chess game, ran substantially slower
than the sequential version. This unfortunately held
true for every size of tree that we have tested. Trees
with larger depths, such as 25, encountered heap size
errors when trying to create the tree. When switching
to the chess game move trees, we started to actually see
improvement.A possible explanation for this is that the
sequential algorithm was able to perform much better
on a simple tree containing only integer values, that
was not as computationally demanding as the context
of a chess game, where moves are sent to an evaluator
to determine a score for each move. However, more
research would be required to determine the true reason.

In our final experiment, we chose to keep the depth
constant for this experiment, due to the exponential
nature of hess move trees, when the depth is increased it
starts to run extremely slowly and makes it impractical
to gather data.

VIII. FUTURE RESEARCH

For future research, it would be worthwhile to evaluate
these parallelism techniques on a variety of algorithms
beyond the Alpha-Beta to gain a broader understanding
of their effectiveness and applicability across various
problem areas. This could offer important insights into
each method’s advantages and drawbacks, assisting in
the selection of the most appropriate parallelism tech-
nique for distinct computational tasks. Another avenue
to explore would be having each implementation play
against each other, to gain an idea of where they rank
skill-wise.

IX. CONCLUSION

The parallel implementations proved to improve the
performance of the Sequential Alpha-Beta Pruning Al-
gorithm for Chess. Due to the large variation in chess
games, a larger-scale study could provide more insightful
results. We plan to upload a final version of our AI to
the Lichess website for anyone to play against.

Our code: https://github.com/cirillojon/ChessAI
Link to Existing Open-Source Chess AI used:

https://github.com/amir650/BlackWidow-Chess
Research paper regarding parallelizing alpha-beta:

https://arxiv.org/pdf/1908.11660.pdf

REFERENCES

[1] G. Joanna, How IBM’s Deep Blue Beat World Champion Chess
Player Garry Kasparov,” IEEE Spectrum, 03-May-2017. [On-
line]. Available: https://spectrum.ieee.org/how-ibms-deep-blue-
beat-world-champion-chess-player-garry-kasparov. [Accessed:
02-Apr-2023].

[2] How Many Possible Moves Are There In Chess?” Chess Jour-
nal, [Online]. Available: https://www.chessjournal.com/how-
many-possible-moves-are-there-in-chess/. [Accessed: 02-Apr-
2023].

[3] C. Chang, Java ExecutorService Explained,”
Medium, 08-Jan-2019. [Online]. Available:
https://medium.com/@charleschang/java-executorservice-
explained-9346b17ce8b4. [Accessed: 02-Apr-2023].

[4] J. Holbrook, Java Parallel Streams Performance
Benchmark,” Oracle, 25-Aug-2020. [Online]. Available:
https://blogs.oracle.com/javamagazine/post/java-parallel-
streams-performance-benchmark. [Accessed: 02-Apr-2023].

[5] “Fork/Join Framework,” Oracle, [Online]. Available:
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html.
[Accessed: 02-Apr-2023].

